If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-90=10+4x
We move all terms to the left:
5x^2-90-(10+4x)=0
We add all the numbers together, and all the variables
5x^2-(4x+10)-90=0
We get rid of parentheses
5x^2-4x-10-90=0
We add all the numbers together, and all the variables
5x^2-4x-100=0
a = 5; b = -4; c = -100;
Δ = b2-4ac
Δ = -42-4·5·(-100)
Δ = 2016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2016}=\sqrt{144*14}=\sqrt{144}*\sqrt{14}=12\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-12\sqrt{14}}{2*5}=\frac{4-12\sqrt{14}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+12\sqrt{14}}{2*5}=\frac{4+12\sqrt{14}}{10} $
| -2(x+10)+155=25+30 | | 1/25=5^x | | 10=b^-1 | | 5t-13=4t-1 | | 8-6x+7=6-6x | | 10-5x=3-2x+7-3x | | (X-3)^2+y^2=4 | | 2p^2-16p+26=2 | | 3x^2+18x+22=7 | | 5n^2+20n+22=7 | | 17=7+x/4 | | 5n+20n+22=7 | | 5n^2-10n-33=7 | | 2y-9(18y-7)=3263 | | 5x^2-20x+19=4 | | 215=280-x | | -v+203=271 | | 20(t)=-16t^2+40t+6 | | -v+203=207 | | 2x+10+5x+10=180 | | 20=-16t^2+40t+6 | | Y=x^2+10x-96 | | 3(y+1)^2-5=43 | | 3x-12+6=5x+-6 | | 2x+10,5x+10=180 | | 2x+105x+10=180 | | 11=4d-1 | | -8(1-7r)=-120 | | 133=-w+272 | | 36-u=209 | | 90=-5(6-4n) | | 11/11=x/15 |